編隊衛星による宇宙プラズマ「その場」完全観測の実施にむけて --SCOPE衛星観測装置--

齋藤義文、前澤洌(JAXA/ISAS)、藤本正樹(東工大) 小嶋浩嗣(京大)、篠原育、津田雄一(JAXA/ISAS) 次期磁気圏衛星WG

		親衛星	子衛星[近:1]	子衛星 [遠:3]
		FESA (10eV-40keV 高時間分解)		
	電子	MESA (10keV - 100keV)		
		HEP-E (30keV-700keV)	20keV/q)	EISA (TUEV-
粒子			N.A.	
		FISA(5eV/q-40keV/q 高時間分解)		電子・イオン同時計測
	イオン	IMSA(5eV/q-25keV/q 質量分析)		
		MINS (10kev/q-100kev/q貨重分析)		
		HEP-I (30keV - 1MeV)		
	粒子&電磁場	WPC (波動・粒子相関器)	N.A.	
	7+++=	MGF (DC・低周波磁場 <128Hz)	MGF (DC·	低周波磁場 < 64Hz)
	1131/1万	WFC-B (高周波磁場 <10kHz)	WFC-B (高序	周波磁場 < 10kHz)
				· · · · · · · · · · · · · · · · · · ·
電	磁場	EFD (DC・低周波電場 <128Hz)	EFD (DC.	低周波電場 < 64Hz)
	電場		(
		WFC-E (高周波電場 <100kHz)	WFC-E (高周	周波電場 < 20kHz)
		SPECTRUM (高周波電場 < 10MHz)		

01

ب 📌

0

-

プラズマ / 粒子観測装置

·高時間分解能 従来の<u>100(</u>

新規技術

1) 高時間分解能セ 2) アナログASICを 量、低消費電力化 衛星搭載用プラズマ観測器の時間分解能

·高時間分<u>解能雷子計測</u> 従来の 200 **FESA** 新規技術 300 雷子 雷子 1) 高時間分解 2) アナログAS MCP or SSD 高圧電源 衛星パネル プリアンプ 量、低消費電

)軽

·高時間分解能電子計測

Single spacecraftでは波面の広がりがわからない

点の観測から面の観測へ 全方位的な波動エネルギー流量の同定へ 波動ー波動相関計測による波数と位相速度 の同定

プラズマ波動観測

新規開発技術

スピン軸アンテナ

DC~太陽風電子プラズマ周波数(0Hz~100kHz)の電界3成分観測

従来:スピン軸方向の電界成分が欠落 電場の絶対値とその方向を算出することができなかった

スピン軸アンテナの搭載

・電界の絶対値の算出
・波動-粒子相互作用における電界エネルギーおよび、電磁場エネルギーフ
ローであるポィンティングフラックス(EXH)の算出

粒子と波動のエネルギー交換の定量的評価

スピン軸アンテナ候補

プラズマ波動観測

新規開発技術

プラズマ観測 & プラズマ波動観測

新規開発技術

<u>親ー子間通信によるデータ取得戦略</u>

